Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37073791

RESUMEN

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Clostridium perfringens/metabolismo , Factores de Virulencia , Inflamación , Interleucina-1beta/metabolismo , Factores de Crecimiento Nervioso , Moléculas de Adhesión Celular Neuronal
2.
EMBO J ; 42(6): e112558, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762431

RESUMEN

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Asunto(s)
Caspasas , Inflamasomas , Ratones , Humanos , Animales , Caspasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Moraxella catarrhalis/metabolismo , Proteínas Portadoras , Inmunidad Innata
3.
Stem Cell Rev Rep ; 19(5): 1415-1426, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36811746

RESUMEN

Ischemic stroke is the major cause of death and morbidity worldwide. Stem cell treatment is at the forefront of ischemic therapeutic interventions. However, the fate of these cells following transplantation is mostly unknown. The current study examines the influence of oxidative and inflammatory pathological events associated with experimental ischemic stroke (oxygen glucose deprivation (OGD)) on the stem cell population (human Dental Pulp Stem Cells, and human Mesenchymal Stem Cells) through the involvement of the NLRP3 inflammasome. We explored the destiny of the above-mentioned stem cells in the stressed micro (-environment) and the ability of MCC950 to reverse the magnitudes. An enhanced expression of NLRP3, ASC, cleaved caspase1, active IL-1ß and active IL-18 in OGD-treated DPSC and MSC was observed. The MCC950 significantly reduced NLRP3 inflammasome activation in the aforementioned cells. Further, in OGD groups, oxidative stress markers were shown to be alleviated in the stem cells under stress, which was effectively relieved by MCC950 supplementation. Interestingly, whereas OGD increased NLRP3 expression, it decreased SIRT3 levels, implying that these two processes are intertwined. In brief, we discovered that MCC950 inhibits NLRP3-mediated inflammation by inhibiting the NLRP3 inflammasome and increasing SIRT3. To conclude, according to our findings, inhibiting NLRP3 activation while enhancing SIRT3 levels with MCC950 reduces oxidative and inflammatory stress in stem cells under OGD-induced stress. These findings shed light on the causes of hDPSC and hMSC demise following transplantation and point to strategies to lessen therapeutic cell loss under ischemic-reperfusion stress.


Asunto(s)
Accidente Cerebrovascular Isquémico , Sirtuina 3 , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Oxígeno , Glucosa , Sulfonamidas/farmacología
4.
J Clin Invest ; 132(19)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36189795

RESUMEN

Mevalonate kinase deficiency (MKD) is characterized by recurrent fevers and flares of systemic inflammation, caused by biallelic loss-of-function mutations in MVK. The underlying disease mechanisms and triggers of inflammatory flares are poorly understood because of the lack of in vivo models. We describe genetically modified mice bearing the hypomorphic mutation p.Val377Ile (the commonest variant in patients with MKD) and amorphic, frameshift mutations in Mvk. Compound heterozygous mice recapitulated the characteristic biochemical phenotype of MKD, with increased plasma mevalonic acid and clear buildup of unprenylated GTPases in PBMCs, splenocytes, and bone marrow. The inflammatory response to LPS was enhanced in compound heterozygous mice and treatment with the NLRP3 inflammasome inhibitor MCC950 prevented the elevation of circulating IL-1ß, thus identifying a potential inflammasome target for future therapeutic approaches. Furthermore, lines of mice with a range of deficiencies in mevalonate kinase and abnormal prenylation mirrored the genotype-phenotype relationship in human MKD. Importantly, these mice allowed the determination of a threshold level of residual enzyme activity, below which protein prenylation is impaired. Elevated temperature dramatically but reversibly exacerbated the deficit in the mevalonate pathway and the defective prenylation in vitro and in vivo, highlighting increased body temperature as a likely trigger of inflammatory flares.


Asunto(s)
Deficiencia de Mevalonato Quinasa , Animales , Temperatura Corporal , Fiebre , GTP Fosfohidrolasas/genética , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Lipopolisacáridos/metabolismo , Deficiencia de Mevalonato Quinasa/tratamiento farmacológico , Deficiencia de Mevalonato Quinasa/genética , Deficiencia de Mevalonato Quinasa/metabolismo , Ácido Mevalónico/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Prenilación de Proteína
5.
Immunol Cell Biol ; 100(4): 235-249, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35175629

RESUMEN

Increased inflammasome responses are strongly implicated in inflammatory diseases; however, their specific roles are incompletely understood. Therefore, we sought to examine the roles of nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) and absent in melanoma-2 (AIM2) inflammasomes in cigarette smoke-induced inflammation in a model of experimental chronic obstructive pulmonary disease (COPD). We targeted NLRP3 with the inhibitor MCC950 given prophylactically or therapeutically and examined Aim2-/- mice in cigarette smoke-induced experimental COPD. MCC950 treatment had minimal effects on disease development and/or progression. Aim2-/- mice had increased airway neutrophils with decreased caspase-1 levels, independent of changes in lung neutrophil chemokines. Suppressing neutrophils with anti-Ly6G in experimental COPD in wild-type mice reduced neutrophils in bone marrow, blood and lung. By contrast, anti-Ly6G treatment in Aim2-/- mice with experimental COPD had no effect on neutrophils in bone marrow, partially reduced neutrophils in the blood and had no effect on neutrophils or neutrophil caspase-1 levels in the lungs. These findings identify that following cigarette smoke exposure, Aim2 is important for anti-Ly6G-mediated depletion of neutrophils, suppression of neutrophil recruitment and mediates activation of caspase-1 in neutrophils.


Asunto(s)
Fumar Cigarrillos , Neutrófilos , Animales , Caspasa 1 , Fumar Cigarrillos/efectos adversos , Proteínas de Unión al ADN , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila
6.
EMBO J ; 39(14): e103454, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32484988

RESUMEN

The alarm cytokine interleukin-1ß (IL-1ß) is a potent activator of the inflammatory cascade following pathogen recognition. IL-1ß production typically requires two signals: first, priming by recognition of pathogen-associated molecular patterns leads to the production of immature pro-IL-1ß; subsequently, inflammasome activation by a secondary signal allows cleavage and maturation of IL-1ß from its pro-form. However, despite the important role of IL-1ß in controlling local and systemic inflammation, its overall regulation is still not fully understood. Here we demonstrate that peritoneal tissue-resident macrophages use an active inhibitory pathway, to suppress IL-1ß processing, which can otherwise occur in the absence of a second signal. Programming by the transcription factor Gata6 controls the expression of prostacyclin synthase, which is required for prostacyclin production after lipopolysaccharide stimulation and optimal induction of IL-10. In the absence of secondary signal, IL-10 potently inhibits IL-1ß processing, providing a previously unrecognized control of IL-1ß in tissue-resident macrophages.


Asunto(s)
Epoprostenol/inmunología , Interleucina-10/inmunología , Interleucina-1beta/inmunología , Macrófagos Peritoneales/inmunología , Animales , Epoprostenol/genética , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-10/genética , Interleucina-1beta/genética , Macrófagos Peritoneales/patología , Ratones , Ratones Transgénicos
7.
Am J Transl Res ; 9(6): 2723-2735, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28670364

RESUMEN

Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1ß, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...